scd40-rusty-pi/src/main.rs

394 lines
12 KiB
Rust
Raw Normal View History

//! Raspberry Pi Pico W meat thermometer
#![no_std]
#![no_main]
// required for impl in AppProps code for picoserve
#![feature(impl_trait_in_assoc_type)]
use cyw43::JoinOptions;
use cyw43_pio::{PioSpi, DEFAULT_CLOCK_DIVIDER};
use embassy_executor::Spawner;
use embassy_net::{StackResources, Ipv4Cidr, Ipv4Address};
use embassy_rp::bind_interrupts;
use embassy_rp::clocks::RoscRng;
use embassy_rp::gpio::{Level, Output};
use embassy_rp::i2c::{self, Config};
use embassy_rp::peripherals::{DMA_CH0, PIO0};
use embassy_rp::peripherals::USB;
use embassy_rp::peripherals::I2C1;
use embassy_rp::pio::{InterruptHandler, Pio};
use embassy_sync::{blocking_mutex::raw::CriticalSectionRawMutex, mutex::Mutex};
use embassy_rp::usb::{Driver, InterruptHandler as USBInterruptHandler};
use embassy_time::{Duration, Timer, Delay};
use heapless::Vec;
use libscd::synchronous::scd4x::Scd4x;
use picoserve::{
make_static,
routing::{get, get_service, PathRouter},
AppWithStateBuilder, AppRouter,
response::DebugValue
};
use picoserve::response::File;
use picoserve::extract::State;
use rand::RngCore;
use static_cell::StaticCell;
use {defmt_rtt as _, panic_probe as _};
const WIFI_NETWORK: &str = "bendybogalow";
const WIFI_PASSWORD: &str = "parsnipcabbageonion";
const INDEX: &str = include_str!("html/index.html");
bind_interrupts!(struct Irqs {
PIO0_IRQ_0 => InterruptHandler<PIO0>;
});
bind_interrupts!(struct UsbIrqs {
USBCTRL_IRQ => USBInterruptHandler<USB>;
});
#[embassy_executor::task]
async fn logger_task(driver: Driver<'static, USB>) {
embassy_usb_logger::run!(1024, log::LevelFilter::Info, driver);
}
#[embassy_executor::task]
async fn cyw43_task(runner: cyw43::Runner<'static, Output<'static>, PioSpi<'static, PIO0, 0, DMA_CH0>>) -> ! {
runner.run().await
}
#[embassy_executor::task]
async fn net_task(mut runner: embassy_net::Runner<'static, cyw43::NetDriver<'static>>) -> ! {
runner.run().await
}
/*
async fn co2ppm_to_str {
let mut buff : [u8; 20] = [0u8; 20];
unsafe {
CO2PPM.numtoa(10, &mut buff);
}
let buffstr: &str = core::str::from_utf8(&mut buff).unwrap();
log::info!("CO2PPM from build_app: {}", buffstr);
"1234" // works
// buffstr // fails for the obvious reason of lifetime
}
*/
/*
impl Content for AtomicU16 {
fn content_type(&self) -> &'static str {
"text/plain; charset=utf-8"
}
fn content_length(&self) -> usize {
5;
}
async fn write_content<W: Write>(self, writer: W) -> Result<(), W::Error> {
"fooo".as_bytes().write_content(writer).await
}
}
*/
/*
struct Number {
value: u16;
}
async fn get_number(Number { value }: Number) -> impl IntoResponse {
picoserve::response::DebugValue(value)
}
*/
struct CO2PPM {
co2ppm : u16,
}
#[derive(Clone, Copy)]
struct SharedPPM(&'static Mutex<CriticalSectionRawMutex, CO2PPM>);
struct AppState {
shared_ppm : SharedPPM,
}
impl picoserve::extract::FromRef<AppState> for SharedPPM {
fn from_ref(state: &AppState) -> Self {
state.shared_ppm
}
}
// picoserve HTTP code kicked off using: https://github.com/sammhicks/picoserve/blob/main/examples/embassy/hello_world/src/main.rs
struct AppProps;
impl AppWithStateBuilder for AppProps {
type State = AppState;
type PathRouter = impl PathRouter<AppState>;
fn build_app(self) -> picoserve::Router<Self::PathRouter, Self::State> {
//let Self { } = self;
/*let mut buff : [u8; 20] = [0u8; 20];
unsafe {
let _ = CO2PPM.numtoa(10, &mut buff);
}
let buffstr: &str = core::str::from_utf8(&mut buff).unwrap();
log::info!("CO2PPM from build_app: {}", buffstr);*/
picoserve::Router::new()
.route(
"/",
get_service(File::html(INDEX)) // .replace("%{CO2}%", CO2PPM.to_string())))
)
.route(
"/main.css",
get_service(File::css(include_str!("html/main.css")))
)
.route(
"/data/co2",
get(|State(SharedPPM(co2ppm)): State<SharedPPM>| async move { DebugValue( co2ppm.lock().await.co2ppm ) }),
)
}
}
// 2 is plenty of a little IoT thermometer, right?
const WEB_TASK_POOL_SIZE: usize = 2;
#[embassy_executor::task(pool_size = WEB_TASK_POOL_SIZE)]
async fn web_task(
id: usize,
stack: embassy_net::Stack<'static>,
app: &'static AppRouter<AppProps>,
config: &'static picoserve::Config<Duration>,
state: AppState,
) -> ! {
let port = 80;
let mut tcp_rx_buffer = [0; 1024];
let mut tcp_tx_buffer = [0; 1024];
let mut http_buffer = [0; 2048];
picoserve::listen_and_serve_with_state(
id,
app,
config,
stack,
port,
&mut tcp_rx_buffer,
&mut tcp_tx_buffer,
&mut http_buffer,
&state,
)
.await
}
#[embassy_executor::main]
async fn main(spawner: Spawner) {
let p = embassy_rp::init(Default::default());
let driver = Driver::new(p.USB, UsbIrqs);
spawner.spawn(logger_task(driver)).unwrap();
let mut rng = RoscRng;
// TODO: this was required to make log entries before the loop actually reach the TTY - so I am
// guessing there is some setup happening in the background and wonder if there is a better way
// to wait for that than a sleep...
Timer::after_secs(1).await;
log::info!("main: entry");
let fw = include_bytes!("../cyw43-firmware/43439A0.bin");
let clm = include_bytes!("../cyw43-firmware/43439A0_clm.bin");
// To make flashing faster for development, you may want to flash the firmwares independently
// at hardcoded addresses, instead of baking them into the program with `include_bytes!`:
// probe-rs download ../../cyw43-firmware/43439A0.bin --binary-format bin --chip RP2040 --base-address 0x10100000
// probe-rs download ../../cyw43-firmware/43439A0_clm.bin --binary-format bin --chip RP2040 --base-address 0x10140000
//let fw = unsafe { core::slice::from_raw_parts(0x10100000 as *const u8, 230321) };
//let clm = unsafe { core::slice::from_raw_parts(0x10140000 as *const u8, 4752) };
log::info!("main: init IO");
let pwr = Output::new(p.PIN_23, Level::Low);
let cs = Output::new(p.PIN_25, Level::High);
let mut pio = Pio::new(p.PIO0, Irqs);
let spi = PioSpi::new(
&mut pio.common,
pio.sm0,
DEFAULT_CLOCK_DIVIDER,
pio.irq0,
cs,
p.PIN_24,
p.PIN_29,
p.DMA_CH0,
);
log::info!("main: init wifi");
static STATE: StaticCell<cyw43::State> = StaticCell::new();
let state = STATE.init(cyw43::State::new());
let (net_device, mut control, runner) = cyw43::new(state, pwr, spi, fw).await;
defmt::unwrap!(spawner.spawn(cyw43_task(runner)));
log::info!("main: init clm");
control.init(clm).await;
control
.set_power_management(cyw43::PowerManagementMode::PowerSave)
.await;
//let config = Config::dhcpv4(Default::default());
log::info!("main: configure static IP");
let config = embassy_net::Config::ipv4_static(embassy_net::StaticConfigV4 {
address: Ipv4Cidr::new(Ipv4Address::new(192, 168, 3, 15), 24),
dns_servers: Vec::new(),
gateway: Some(Ipv4Address::new(192, 168, 3, 1)),
});
// Generate random seed
let seed = rng.next_u64();
// Init network stack
log::info!("main: init network stack");
static RESOURCES: StaticCell<StackResources<3>> = StaticCell::new();
let (stack, runner) = embassy_net::new(net_device, config, RESOURCES.init(StackResources::new()), seed);
defmt::unwrap!(spawner.spawn(net_task(runner)));
log::info!("main: await network join");
loop {
match control
.join(WIFI_NETWORK, JoinOptions::new(WIFI_PASSWORD.as_bytes()))
.await
{
Ok(_) => break,
Err(err) => {
log::error!("join failed with status={}", err.status);
}
}
Timer::after_millis(100).await;
}
// Wait for DHCP, not necessary when using static IP
/*log::info!("waiting for DHCP...");
while !stack.is_config_up() {
Timer::after_millis(100).await;
}
log::info!("DHCP is now up!");*/
log::info!("Starting I2C Comms with SCD40");
Timer::after_secs(1).await;
// this code derived from: https://github.com/SvetlinZarev/libscd/blob/main/examples/embassy-scd4x/src/main.rs
let sda = p.PIN_26;
let scl = p.PIN_27;
let i2c = i2c::I2c::new_blocking(p.I2C1, scl, sda, Config::default());
log::info!("Initialise Scd4x");
Timer::after_secs(1).await;
let mut scd = Scd4x::new(i2c, Delay);
// When re-programming, the controller will be restarted,
// but not the sensor. We try to stop it in order to
// prevent the rest of the commands failing.
log::info!("Stop periodic measurements");
Timer::after_secs(1).await;
_ = scd.stop_periodic_measurement();
log::info!("Sensor serial number: {:?}", scd.serial_number());
Timer::after_secs(1).await;
if let Err(e) = scd.start_periodic_measurement() {
log::error!("Failed to start periodic measurement: {:?}", e );
}
let co2ppm = 69;
let shared_ppm = SharedPPM(
make_static!(Mutex<CriticalSectionRawMutex, CO2PPM>, Mutex::new(CO2PPM { co2ppm })),
);
spawner.must_spawn(read_co2(scd, shared_ppm));
log::info!("Commence HTTP service");
Timer::after_secs(1).await;
let app = make_static!(AppRouter<AppProps>, AppProps.build_app());
let config = make_static!(
picoserve::Config<Duration>,
picoserve::Config::new(picoserve::Timeouts {
start_read_request: Some(Duration::from_secs(5)),
read_request: Some(Duration::from_secs(1)),
write: Some(Duration::from_secs(1)),
})
.keep_connection_alive()
);
for id in 0..WEB_TASK_POOL_SIZE {
spawner.must_spawn(web_task(
id,
stack,
app,
config,
AppState{ shared_ppm },
));
}
/*
let mut rx_buffer = [0; 4096];
let mut tx_buffer = [0; 4096];
let mut buf = [0; 4096];
let mut socket = TcpSocket::new(stack, &mut rx_buffer, &mut tx_buffer);
//let delay = Duration::from_secs(1);
log::info!("main: pre-loop");
loop {
let mut socket = TcpSocket::new(stack, &mut rx_buffer, &mut tx_buffer);
socket.set_timeout(Some(Duration::from_secs(10)));
control.gpio_set(0, false).await;
log::info!("Listening on TCP:00...");
if let Err(e) = socket.accept(1234).await {
log::warn!("accept error: {:?}", e);
continue;
}
log::info!("Received connection from {:?}", socket.remote_endpoint());
control.gpio_set(0, true).await;
loop {
let n = match socket.read(&mut buf).await {
Ok(0) => {
log::warn!("read EOF");
break;
}
Ok(n) => n,
Err(e) => {
log::warn!("read error: {:?}", e);
break;
}
};
log::info!("rxd {}", from_utf8(&buf[..n]).unwrap());
match socket.write_all(&buf[..n]).await {
Ok(()) => {}
Err(e) => {
log::warn!("write error: {:?}", e);
break;
}
};
}
log::info!("LED off!");
control.gpio_set(0, false).await;
}
*/
}
#[embassy_executor::task]
async fn read_co2(
mut scd: Scd4x<i2c::I2c<'static, I2C1, i2c::Blocking>, Delay>,
shared_ppm: SharedPPM
) {
log::info!("Enter sensor read loop");
Timer::after_secs(1).await;
loop {
if scd.data_ready().unwrap() {
let m = scd.read_measurement().unwrap();
shared_ppm.0.lock().await.co2ppm = m.co2;
log::info!(
"CO2: {}\nHumidity: {}\nTemperature: {}", m.co2, m.humidity, m.temperature
)
}
Timer::after_secs(1).await;
}
}