//! Raspberry Pi Pico W meat thermometer #![no_std] #![no_main] // required for impl in AppProps code for picoserve #![feature(impl_trait_in_assoc_type)] use cyw43::JoinOptions; use cyw43_pio::{PioSpi, DEFAULT_CLOCK_DIVIDER}; use embassy_executor::Spawner; use embassy_net::{StackResources, Ipv4Cidr, Ipv4Address}; use embassy_rp::bind_interrupts; use embassy_rp::clocks::RoscRng; use embassy_rp::gpio::{Level, Output}; use embassy_rp::i2c::{self, Config}; use embassy_rp::peripherals::{DMA_CH0, PIO0}; use embassy_rp::peripherals::USB; use embassy_rp::peripherals::I2C1; use embassy_rp::pio::{InterruptHandler, Pio}; use embassy_sync::{blocking_mutex::raw::CriticalSectionRawMutex, mutex::Mutex}; use embassy_rp::usb::{Driver, InterruptHandler as USBInterruptHandler}; use embassy_time::{Duration, Timer, Delay}; use heapless::Vec; use libscd::synchronous::scd4x::Scd4x; use picoserve::{ make_static, routing::{get, get_service, PathRouter}, AppWithStateBuilder, AppRouter, response::DebugValue }; use picoserve::response::File; use picoserve::extract::State; use rand::RngCore; use static_cell::StaticCell; use {defmt_rtt as _, panic_probe as _}; const WIFI_NETWORK: &str = "bendybogalow"; const WIFI_PASSWORD: &str = "parsnipcabbageonion"; const INDEX: &str = include_str!("html/index.html"); bind_interrupts!(struct Irqs { PIO0_IRQ_0 => InterruptHandler; }); bind_interrupts!(struct UsbIrqs { USBCTRL_IRQ => USBInterruptHandler; }); #[embassy_executor::task] async fn logger_task(driver: Driver<'static, USB>) { embassy_usb_logger::run!(1024, log::LevelFilter::Info, driver); } #[embassy_executor::task] async fn cyw43_task(runner: cyw43::Runner<'static, Output<'static>, PioSpi<'static, PIO0, 0, DMA_CH0>>) -> ! { runner.run().await } #[embassy_executor::task] async fn net_task(mut runner: embassy_net::Runner<'static, cyw43::NetDriver<'static>>) -> ! { runner.run().await } /* async fn co2ppm_to_str { let mut buff : [u8; 20] = [0u8; 20]; unsafe { CO2PPM.numtoa(10, &mut buff); } let buffstr: &str = core::str::from_utf8(&mut buff).unwrap(); log::info!("CO2PPM from build_app: {}", buffstr); "1234" // works // buffstr // fails for the obvious reason of lifetime } */ /* impl Content for AtomicU16 { fn content_type(&self) -> &'static str { "text/plain; charset=utf-8" } fn content_length(&self) -> usize { 5; } async fn write_content(self, writer: W) -> Result<(), W::Error> { "fooo".as_bytes().write_content(writer).await } } */ /* struct Number { value: u16; } async fn get_number(Number { value }: Number) -> impl IntoResponse { picoserve::response::DebugValue(value) } */ struct CO2PPM { co2ppm : u16, } #[derive(Clone, Copy)] struct SharedPPM(&'static Mutex); struct AppState { shared_ppm : SharedPPM, } impl picoserve::extract::FromRef for SharedPPM { fn from_ref(state: &AppState) -> Self { state.shared_ppm } } // picoserve HTTP code kicked off using: https://github.com/sammhicks/picoserve/blob/main/examples/embassy/hello_world/src/main.rs struct AppProps; impl AppWithStateBuilder for AppProps { type State = AppState; type PathRouter = impl PathRouter; fn build_app(self) -> picoserve::Router { //let Self { } = self; /*let mut buff : [u8; 20] = [0u8; 20]; unsafe { let _ = CO2PPM.numtoa(10, &mut buff); } let buffstr: &str = core::str::from_utf8(&mut buff).unwrap(); log::info!("CO2PPM from build_app: {}", buffstr);*/ picoserve::Router::new() .route( "/", get_service(File::html(INDEX)) // .replace("%{CO2}%", CO2PPM.to_string()))) ) .route( "/main.css", get_service(File::css(include_str!("html/main.css"))) ) .route( "/data/co2", get(|State(SharedPPM(co2ppm)): State| async move { DebugValue( co2ppm.lock().await.co2ppm ) }), ) } } // 2 is plenty of a little IoT thermometer, right? const WEB_TASK_POOL_SIZE: usize = 2; #[embassy_executor::task(pool_size = WEB_TASK_POOL_SIZE)] async fn web_task( id: usize, stack: embassy_net::Stack<'static>, app: &'static AppRouter, config: &'static picoserve::Config, state: AppState, ) -> ! { let port = 80; let mut tcp_rx_buffer = [0; 1024]; let mut tcp_tx_buffer = [0; 1024]; let mut http_buffer = [0; 2048]; picoserve::listen_and_serve_with_state( id, app, config, stack, port, &mut tcp_rx_buffer, &mut tcp_tx_buffer, &mut http_buffer, &state, ) .await } #[embassy_executor::main] async fn main(spawner: Spawner) { let p = embassy_rp::init(Default::default()); let driver = Driver::new(p.USB, UsbIrqs); spawner.spawn(logger_task(driver)).unwrap(); let mut rng = RoscRng; // TODO: this was required to make log entries before the loop actually reach the TTY - so I am // guessing there is some setup happening in the background and wonder if there is a better way // to wait for that than a sleep... Timer::after_secs(1).await; log::info!("main: entry"); let fw = include_bytes!("../cyw43-firmware/43439A0.bin"); let clm = include_bytes!("../cyw43-firmware/43439A0_clm.bin"); // To make flashing faster for development, you may want to flash the firmwares independently // at hardcoded addresses, instead of baking them into the program with `include_bytes!`: // probe-rs download ../../cyw43-firmware/43439A0.bin --binary-format bin --chip RP2040 --base-address 0x10100000 // probe-rs download ../../cyw43-firmware/43439A0_clm.bin --binary-format bin --chip RP2040 --base-address 0x10140000 //let fw = unsafe { core::slice::from_raw_parts(0x10100000 as *const u8, 230321) }; //let clm = unsafe { core::slice::from_raw_parts(0x10140000 as *const u8, 4752) }; log::info!("main: init IO"); let pwr = Output::new(p.PIN_23, Level::Low); let cs = Output::new(p.PIN_25, Level::High); let mut pio = Pio::new(p.PIO0, Irqs); let spi = PioSpi::new( &mut pio.common, pio.sm0, DEFAULT_CLOCK_DIVIDER, pio.irq0, cs, p.PIN_24, p.PIN_29, p.DMA_CH0, ); log::info!("main: init wifi"); static STATE: StaticCell = StaticCell::new(); let state = STATE.init(cyw43::State::new()); let (net_device, mut control, runner) = cyw43::new(state, pwr, spi, fw).await; defmt::unwrap!(spawner.spawn(cyw43_task(runner))); log::info!("main: init clm"); control.init(clm).await; control .set_power_management(cyw43::PowerManagementMode::PowerSave) .await; //let config = Config::dhcpv4(Default::default()); log::info!("main: configure static IP"); let config = embassy_net::Config::ipv4_static(embassy_net::StaticConfigV4 { address: Ipv4Cidr::new(Ipv4Address::new(192, 168, 3, 15), 24), dns_servers: Vec::new(), gateway: Some(Ipv4Address::new(192, 168, 3, 1)), }); // Generate random seed let seed = rng.next_u64(); // Init network stack log::info!("main: init network stack"); static RESOURCES: StaticCell> = StaticCell::new(); let (stack, runner) = embassy_net::new(net_device, config, RESOURCES.init(StackResources::new()), seed); defmt::unwrap!(spawner.spawn(net_task(runner))); log::info!("main: await network join"); loop { match control .join(WIFI_NETWORK, JoinOptions::new(WIFI_PASSWORD.as_bytes())) .await { Ok(_) => break, Err(err) => { log::error!("join failed with status={}", err.status); } } Timer::after_millis(100).await; } // Wait for DHCP, not necessary when using static IP /*log::info!("waiting for DHCP..."); while !stack.is_config_up() { Timer::after_millis(100).await; } log::info!("DHCP is now up!");*/ log::info!("Starting I2C Comms with SCD40"); Timer::after_secs(1).await; // this code derived from: https://github.com/SvetlinZarev/libscd/blob/main/examples/embassy-scd4x/src/main.rs let sda = p.PIN_26; let scl = p.PIN_27; let i2c = i2c::I2c::new_blocking(p.I2C1, scl, sda, Config::default()); log::info!("Initialise Scd4x"); Timer::after_secs(1).await; let mut scd = Scd4x::new(i2c, Delay); // When re-programming, the controller will be restarted, // but not the sensor. We try to stop it in order to // prevent the rest of the commands failing. log::info!("Stop periodic measurements"); Timer::after_secs(1).await; _ = scd.stop_periodic_measurement(); log::info!("Sensor serial number: {:?}", scd.serial_number()); Timer::after_secs(1).await; if let Err(e) = scd.start_periodic_measurement() { log::error!("Failed to start periodic measurement: {:?}", e ); } let co2ppm = 69; let shared_ppm = SharedPPM( make_static!(Mutex, Mutex::new(CO2PPM { co2ppm })), ); spawner.must_spawn(read_co2(scd, shared_ppm)); log::info!("Commence HTTP service"); Timer::after_secs(1).await; let app = make_static!(AppRouter, AppProps.build_app()); let config = make_static!( picoserve::Config, picoserve::Config::new(picoserve::Timeouts { start_read_request: Some(Duration::from_secs(5)), read_request: Some(Duration::from_secs(1)), write: Some(Duration::from_secs(1)), }) .keep_connection_alive() ); for id in 0..WEB_TASK_POOL_SIZE { spawner.must_spawn(web_task( id, stack, app, config, AppState{ shared_ppm }, )); } /* let mut rx_buffer = [0; 4096]; let mut tx_buffer = [0; 4096]; let mut buf = [0; 4096]; let mut socket = TcpSocket::new(stack, &mut rx_buffer, &mut tx_buffer); //let delay = Duration::from_secs(1); log::info!("main: pre-loop"); loop { let mut socket = TcpSocket::new(stack, &mut rx_buffer, &mut tx_buffer); socket.set_timeout(Some(Duration::from_secs(10))); control.gpio_set(0, false).await; log::info!("Listening on TCP:00..."); if let Err(e) = socket.accept(1234).await { log::warn!("accept error: {:?}", e); continue; } log::info!("Received connection from {:?}", socket.remote_endpoint()); control.gpio_set(0, true).await; loop { let n = match socket.read(&mut buf).await { Ok(0) => { log::warn!("read EOF"); break; } Ok(n) => n, Err(e) => { log::warn!("read error: {:?}", e); break; } }; log::info!("rxd {}", from_utf8(&buf[..n]).unwrap()); match socket.write_all(&buf[..n]).await { Ok(()) => {} Err(e) => { log::warn!("write error: {:?}", e); break; } }; } log::info!("LED off!"); control.gpio_set(0, false).await; } */ } #[embassy_executor::task] async fn read_co2( mut scd: Scd4x, Delay>, shared_ppm: SharedPPM ) { log::info!("Enter sensor read loop"); Timer::after_secs(1).await; loop { if scd.data_ready().unwrap() { let m = scd.read_measurement().unwrap(); shared_ppm.0.lock().await.co2ppm = m.co2; log::info!( "CO2: {}\nHumidity: {}\nTemperature: {}", m.co2, m.humidity, m.temperature ) } Timer::after_secs(1).await; } }